The tumour suppressor protein p53 can repress transcription of cyclin B.
نویسندگان
چکیده
The tumour suppressor protein p53 has functions in controlling the G(1)/S and G(2)/M transitions. Central regulators for progression from G(2) to mitosis are B-type cyclins complexed with cdc2 kinase. In mammals two cyclin B proteins are found, cyclin B1 and B2. We show that upon treatment of HepG2 cells with 5-fluorouracil or methotrexate, p53 levels increase while concentrations of cyclin B2 mRNA, measured by RT-PCR with the LightCycler system, are reduced. In DLD-1 colorectal adenocarcinoma cells (DLD-1-tet-off-p53) cyclin B1 and B2 mRNA levels drop after expression of wild-type p53 but not after induction of a DNA binding-deficient mutant of p53. Analysis of the cyclin B2 promoter reveals specific repression of this gene by p53. Transfection of wild-type p53 into SaOS-2 cells shuts off transcription from a cyclin B2 promoter-luciferase construct whereas a p53 mutant protein does not. The cyclin B2 promoter does not contain a consensus p53 binding site. Most of the p53-dependent transcriptional responsiveness resides in its 226 bp core promoter. Taken together with earlier observations on p53-dependent transcription of cyclin B1, our results suggest that one way of regulating G(2) arrest may be a reduction in cyclin B levels through p53-dependent transcriptional repression.
منابع مشابه
The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy
The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...
متن کاملp53 can repress transcription of cell cycle genes through a p21WAF1/CIP1-dependent switch from MMB to DREAM protein complex binding at CHR promoter elements
The tumor suppressor p53 plays an important role in cell cycle arrest by downregulating transcription. Many genes repressed by p53 code for proteins with functions in G₂/M. A large portion of these genes is controlled by cell cycle-dependent elements (CDE) and cell cycle genes homology regions (CHR) in their promoters. Cyclin B2 is an example of such a gene, with a function at the transition fr...
متن کاملThe Increased Level of Serum p53 in Hepatitis B-Associated Liver Cirrhosis
Background: The ability of tumour suppressor protein p53 (P53) to regulate cell cycle processes can be modulated by hepatitis B virus (HBV). While preliminary evidences indicates the involvement of protein-x of HBV (HBx) in altering p53 DNA binding, no further data have been accumulated for the significance of serum p53 in chronic hepatitis B virus infected patients. Methods: 72 non-cirrhotic a...
متن کاملMulti-site phosphorylation of p53 by protein kinases inducible by p53 and DNA damage.
Introduction The p53 tumour suppressor protein is a key element in the cell’s defence against tumour development, and as such is the focus of considerable study for the development of anticancer therapies (for recent reviews see [1,2]). p53 is a potent transcription factor, which is activated in response to signals arising from DNA damage, viral infection, cytokines, hypoxia, activated oncogene...
متن کاملRegulation of p53 tumour suppressor target gene expression by the p52 NFB subunit
The p52/p100 nuclear factor kappa B (NF-jB) subunit (NF-jB2) is aberrantly expressed in many tumour types and has been implicated as a regulator of cell proliferation. Here, we demonstrate that endogenous p52 is a direct regulator of Cyclin D1 expression. However, stimulation of Cyclin D1 expression alone cannot account for all the cell cycle effects of p52/p100 and we also find that p52 repres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 28 22 شماره
صفحات -
تاریخ انتشار 2000